
Submit Manuscript | http://medcraveonline.com

Abbreviations: IAAS, infrastructure as service; VMM, virtual
machine monitor; PAAS, platform as a service; SAAS, software as a
service; VMS, virtual machines

Introduction
As defined by NIST, Cloud Computing is “a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g, networks, servers, storage
applications and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction”.
Cloud Computing is a broad term that describes a broad range of
services. In these systems, resources are provided as service on-
demand. The services provided by cloud computing are infrastructure
as a service (IaaS), platform as a service (PaaS) and software as a
service (SaaS) that are made available as pay-as-you-go model to
subscribers, and it guarantees to them that it sticks to the Service
Level Agreement (SLA). IaaS usage allows the enterprise IT or web
operations group to install and build their application environments on
infrastructure without the pain of purchasing, installing and ongoing
maintenance of the infrastructure.1

Moreover, day by day subscribers’ requires are rising for
computing resources and their needs have dynamic heterogeneity
and platform irrelevance in IaaS. This make datacenters expensive
to maintain which is accompany with wasted energy and floor space,
low resource utilization, and significant management overhead.2 The
virtualization technology come into sight, provides cloud datacenters
have become more flexible, more secure, and provide better support
for on-demand allocation and it address the issue of heterogeneity and
platform irrelevance in a better way, and at the same time the SLA
is guaranteed. With IaaS, the physical infrastructure of IT systems
is typically moved offsite and a service provider grants access to a
virtualized environment of computing resources to its customers. In

these systems, cloud datacenters should have ability to migrate an
application from one set of resources to another in a non-disruptive
manner. Such agility becomes a key in modern cloud computing
infrastructures that aim to efficiently share and manage extremely
large data centers.2

The processing units in cloud virtualization environments are
called as virtual machines (VMs).3 In order to improve resource
utility, resources must be properly allocated and load balancing
must be guaranteed. Load balancing aims to optimize resource use,
maximize throughput, minimize response time, and avoid overload
or sitting idle of any single resource. Therefore, how to schedule
VM resources to realize load balancing in cloud computing and
to improve resource utility becomes an important research point.
In this case, it is the responsibility for the scheduler to balance the
loads across the machines in IaaS. In the absence of load balancing
provision, efficiency of some overloaded virtual machines can sharply
degrade at times, leading to violation of SLA.4 The violation of the
SLA is a major aspect of IaaS and the violation leads to the reduction
of customer satisfaction level and further affects the cloud provider
leading to penalty.

According to the whole information of each VM in an IaaS,
the performance will be managed and enhanced. There are several
methods can monitor and collect the relevant information of node
that includes broadcasting, the centralized polling and agent.5 The
agent mechanism is used to collect the related node information to
achieve efficient utilization resource and enhance work efficiency.
It has inherent navigational autonomy and it could collect related
information of each VM, such as CPU utilization, remaining CPU
capability, remaining memory, transmission rate, etc. However, in
this study, multiple agents are used to gather the related information
in IaaS environment and reduce the resources wasting and cost. We
proposed a load balancing algorithm in cloud IaaS environment

Int Rob Auto J. 2016;1(1):3‒8. 3
© 2016 Keshvadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and build upon your work non-commercially.

A multi-agent based load balancing system in IaaS
cloud environment

Volume 1 Issue 1 - 2016

Sina Keshvadi,1 Behnam Faghih2

1Department of IT, Payame Noor University (PNU), Iran
2Department of Technical and Vocational University, Iran

Correspondence: Sina Keshvadi, Department of IT, Payame
Noor University (PNU), Tehran, Iran,
Email Keshvadi@pnu.ac.ir

Received: August 27, 2016 | Published: October 05, 2016

Abstract

Infrastructure as a service (IaaS) is a type of cloud computing in which a third-party
provider hosts virtualized computing resources over the Internet for executing tasks
in the cloud computing. Whenever some VMs are overloaded and some VMs are
under loaded, this situation may cause to SLA violation and leads to the reduction of
customer satisfaction level and further affects the cloud provider leading to penalty.
However, in this study, we propose a Multiple Agent-based Load Balancing Algorithm
(MA) in which shift the load in the IaaS to achieve well dynamic load balancing across
virtual machines for maximizing the utilization. The proposed algorithm with regard
to changing environment and characteristics of the VMs, perform both of sender-
initiated and receiver-initiated approach to balances the load of an IaaS in such a way
that the amount of waiting time of the tasks in the queue is minimal and at the same
time the SLA is guaranteed. We have compared the proposed algorithm with existing
load balancing and scheduling algorithms via simulation. The simulation results show
that the proposed algorithm is more effective and there is a good improvement in the
load-balance, response time and makespan.

Keywords: cloud computing, load balancing, scheduling, mobile agents

International Robotics & Automation Journal

Research Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.15406/iratj.2016.01.00002&domain=pdf

A multi-agent based load balancing system in IaaS cloud environment 4
Copyright:

©2016 Keshvadi et al.

Citation: Keshvadi S, Faghih B. A multi-agent based load balancing system in IaaS cloud environment. Int Rob Auto J. 2016;1(1):3‒8.
DOI: 10.15406/iratj.2016.01.00002

by using agents that also the distinctive characteristics of virtual
machines are considered.

The rest of this paper is organized as follows:

1.	 A review of the related work is discussed in Section.

2.	 The proposed algorithm is detailed in Section.

3.	 Section.

4.	 Describes the simulation setup and the results. Finally, Section.

5.	 Concludes this study.

Related work
There are basically two kinds of load balancing techniques: static

and dynamic.6 Static algorithms are mostly suitable for homogeneous
and stable environments and can produce very good results in these
environments. However, they are usually not flexible and cannot
match the dynamic changes to the attributes during the execution
time. In the static approach, the task allocation does not change during
execution while in the dynamic it does. A good comparison of these
techniques is mentioned in.7 Dynamic load balancing algorithms are
advantageous over static algorithms. But to gain this advantage, we
need to consider the additional cost associated with collection and
maintenance of the load information.

A dynamic load balancing algorithm has three main components.6
The information, transfer, and location strategies. Information
strategy is responsible for collecting information about nodes in the
system. Transfer strategy selects a job for transfer from a local node
to a remote node. Location strategy selects a destination node for a
transferred task. Two main issues concerning load balancing activity
that depend on the transfer strategy employed are: when is the right
time to start it and what jobs are subjected to it. Two approaches are
commonly used to start the load balancing activity: the time a new job
arrives or is created at a node and the time a finished job departs from
a node. Algorithms which make load balancing decisions at the arrival
or creation of a new job are referred to as sender-initiated, while
algorithms which make load balancing decisions at the departure
of a finished job are referred to as receiver-initiated.6,8 Discusses
the different qualitative metrics or parameters like performance,
scalability, associated overhead etc.2 Introduces online load balance
scheduling for Cloud data centers. They propose an online resource
scheduling algorithm (OLRSA), which considers real-time and
multidimensional resource scheduling. Then Lowest Integrated-load
First Algorithm (LIF) is also introduced.4 Proposes an Autonomous
Agent-Based Load Balancing Algorithm (A2LB) which provides
dynamic load balancing for cloud environment by using agents. They
introduced a fitness value metric in which the fitness values give the
status of a virtual machine.

As cloud task scheduling is an NP-hard optimization problem.9
Recently numerous nature inspired models have received a lot of
research attentions. A good task scheduler should adapt its scheduling
strategy to the changing environment and the types of tasks Hu et
al.10 Proposed genetic algorithm based scheduling mechanism for load
balancing among virtual machines Xu et al.11 Introduced a model for
load balancing in the public cloud by using game theory.12 Proposed
a load balancing technique for cloud computing environments based
on the behaviour of honey bee foraging strategy. The tasks removed
from these VMs are treated as honey bees, which are the information

updaters globally. Their work also considers the priorities of the tasks.
Load Balancing can also be classified in centralized and distributed
load balancing or in application-level and system-level load balancing.
In the next part, we propose our mechanism to load balance in cloud
IaaS datacenters.

Proposed algorithm
Whenever a VM becomes overloaded, the service provider has to

distribute the load in such a manner that the available resources will
be utilized in a proper manner and load at all the virtual machines will
remain balanced. Identifying when it is best to migrate an application
in an overloaded virtual machine to another place has a direct
impact on resource utilization. This issue can be best achieved by an
efficiently monitoring the utilization of computing resources. Agent is
an autonomous unit, which is capable of performing specified tasks on
their own. In follow, we introduce our agents.

Agents

Our proposed mechanism comprises of three agents: Virtual
Machine Monitor (VMM) Agent, Datacenter Monitor (DCM) Agent
and Negotiator Ant (NA) Agent. VMM and DCM agents are generally
agents whereas NA agent is an ant, which is a special category of
mobile agents. Since load balancing in IaaS cloud computing systems
would require searching for under loaded servers and resources, ant
agents suit the purpose and fulfil it appropriately without putting
additional burden on network.

VM monitor agent (VMM agent)

To enhance the monitoring services, each virtual machine in
IaaS is supported with a Virtual machine Monitor agent that we call
it VMM Agent. VMM collects the CPU, memory and bandwidth
utilization of individual virtual machine hosted with different types of
tasks to monitor the load. This agent is supported with a table named
as VM Local_ Table 1. VMLocal_Table store the state of a vm. Where
load satus is categorized in under loaded, normal and overloaded
statuses. Each VMM agent uses its VMLocal_Table to monitor its
load periodically and determines the load status.

Load of a VM can be calculated as follow13:

()

 % 100
3

CPU MEM NE
o d

T
L a µ µ µ+ +

= × (1)

Where CPU
µ

, MEM
µ

, NET
µ

are average utilization of
CPU, memory, network bandwidth during each observed period,
respectively. VMM agents use eq. 1 to determine the load of associated
virtual machine.

Datacenter monitor agent (DcM agent)

This agent monitors all VMM agents in a datacenter. Actually,
it performs information policy in a datacenter by monitoring the
VMM’s information. This agent is supported with table termed
as DcMonitor_table. This table maintains all information about
status and characteristics of all virtual machines in a datacenter. It
categorizes VMs based on their characteristics. A simple template of a
DcMonitor_table is shown as below (Table 2).

https://doi.org/10.15406/iratj.2016.01.00002

A multi-agent based load balancing system in IaaS cloud environment 5
Copyright:

©2016 Keshvadi et al.

Citation: Keshvadi S, Faghih B. A multi-agent based load balancing system in IaaS cloud environment. Int Rob Auto J. 2016;1(1):3‒8.
DOI: 10.15406/iratj.2016.01.00002

Table 1 VM Local table store the state of a vm

VM ID RAM CPU BW OS Load status
VM1 µ1 λ1 γ1 Type 1 Status VM1

VM2 µ2 λ2 γ2 Type 2 Status VM2

VMn µn λn γn Type n Status VMn

Table 2 Dc Monitor table keeps the information about vms

Status Under-loaded; balanced; over loaded List of VMs

OS OS Type 1; OS type 2; OS Type n List of VMs

Number of PE Number 1; Number 2; Number p List of VMs

Ram Ram Type 1; Ram type 2; Ram Type m List of VMs

CPU Type 1 GHz; type 2 GHz; Type m GHz

Bandwidth Type 1 M; Type 2 M; Type m M;

Negotiator ant agent (NA)

These agents are initiated by DCM agents. It will move to other
datacenters and communicate with DCM agent of that datacenter
to enquire the status of VMs present there, looking for the desired
configuration. On receiving the required information, it communicates
the same to its parent DCM agent. Afterwards, it will stay at destination
location, waiting for self-destroy message from parent. The status of
the NA agent may be alive or destroyed.

MA load balancing algorithm scenario
(Figure 1) Provides high level view of proposed mechanism we

should first be aware of the load status of any VM. VMM agents
determine own VM’s state based on its load by eq. 1. There are
overloaded, under loaded and balanced states. If the load of a VM is
more than the upper threshold (σ) then the system is overloaded. If
the load is less than a lower threshold (ν), the system is under loaded.
Otherwise the system is in a balanced state. In the overloaded state a
heavily loaded vm is the one who initiates load balancing. Hence, this
implies that this strategy is coupled with a sender-initiated transfer
strategy. In the under loaded state a lightly loaded vm is the one
who initiates load balancing. Hence, this implies that this strategy
is coupled with a receiver-initiated transfer strategy (Figure 1). MA
load balancing scenario after finding the state of a vm as overloaded,
VMM send a load balancing request to its DCM agent. DCM look
ups its DcMonitor_table to find an under loaded VM with desired
configuration. If found, the task moved from overloaded VM to under
loaded VM to perform. If not, DCM agent initiates some NA agents per
each datacenter in the system to communicate with other datacenters.
The NAs go straightforward to the given datacenter and request the
desired VM from their DCM agents. If not found, NA send back an
unsuccessful TTL-based message to its parent and wait for destroy
message. In the case that the desired VM found, the characteristics
of the VM send back to its DCM agent and wait for parent message.

In the other hands, DCM agent receives reports from its NAs. If
DCM agent don’t receive message, resend another NA agent to the

datacenter. Then, it sends destroy message to any NA which couldn’t
found a desired VM. If all received message are negative, send a
negative reply to requested VM in which the load balancing is not
feasible. Otherwise, it select the appropriated VM from all received
options based on the load and response time and send a transfer
message to that NA and a destroy message to all other ants. Now, it
transfers task from requested VM to given VM and after receive new
load status, DCM agent will update the DcMonitor_table. Algorithms
of various agents deployed in proposed framework are given as follow
(Figure 2). VMM, DCM and NA Agents algorithms.

Figure1 MA load balancing scenario.

https://doi.org/10.15406/iratj.2016.01.00002

A multi-agent based load balancing system in IaaS cloud environment 6
Copyright:

©2016 Keshvadi et al.

Citation: Keshvadi S, Faghih B. A multi-agent based load balancing system in IaaS cloud environment. Int Rob Auto J. 2016;1(1):3‒8.
DOI: 10.15406/iratj.2016.01.00002

VMM agent algorithm

locally calculate the load of own VM based on equation (1)
if (load > upper-Threshold)
 status=overloaded;
if (load< lower-threshold)
 status=under_loaded;
else
 Status=load_balanced;
if(load_Changed(Status))
 request_DcMA (status, characteristics-list[], load)

DcM agent algorithm

Accept load-state from VMMAi
case Overloaded:
{
 Update vmi status
 Look-up (DcTable, under_loaded_VM[], desired configuration)
 if found {
Transfer task from overloaded to under-loaded
Receive new status of both
Update Dctable}
 else {
 for j=2 to number_of_Datacenter do
 initiate NAj (desire configuration, datacenter)
 if (negotiation_ result != feasible)
 send(Self destroy)
 NAj.statuse = destroyed
 else
 Add information and response time to temp-table
 destination = SelectBestFit(temp_table, desire configuration)
 Transfer task form VMi to destination)
 Receive new status of both
 Update Dctable
 for each NA that status==alive
 send(Self_destroy)
}
case Under_loaded:
{
 Look-up (DcTable, over_loaded_VM[], desired configuration)
 if found
 Transfer task from one overloaded_VM to under-loaded_VM
 Receive new status of both
 Update Dctable
}
NA Agent Algorithm

NA agent
Receive VM_configuration and Datacenter_ID from DcMA
Search_datacenter(Datacenter_ID)
ask (VM_configuration)
if (found)
 reply(feasible)
else
 reply(!feasible)
waitForDestroyMessage()
destroy()

Figure 2 VMM, DCM and NA agents algorithms.

https://doi.org/10.15406/iratj.2016.01.00002

A multi-agent based load balancing system in IaaS cloud environment 7
Copyright:

©2016 Keshvadi et al.

Citation: Keshvadi S, Faghih B. A multi-agent based load balancing system in IaaS cloud environment. Int Rob Auto J. 2016;1(1):3‒8.
DOI: 10.15406/iratj.2016.01.00002

Simulation result
In this section, we will show simulation results for our proposed

algorithm i.e. MA load balancing algorithm compared with other
existing algorithms. Experimenting new techniques or strategies in
repeatable, dependable, and scalable environments using real-world
Cloud environments is not practically possible as such experiments
will compromise the end users Qos requirements like security, cost,
and speed. There is a need for a good simulator for experimental
purposes. One such a simulator is CloudSim.14,15 This simulator is a
generalized simulation framework that allows modeling, simulation
and experimenting the cloud computing infrastructure and application
services. We have extended the classes of CloudSim simulator to
simulate our algorithm. Our agents are implemented using java
programming. All simulations are collected using a core-i3 pc with
2.4 GHz CPU and 4 GB memory. We compare the simulation results
of our proposed algorithm with different low and over loaded ratios
with these existing algorithms:

First in first out (FIFO): a general scheduling algorithm that
implements Fisrt-In-First-Out policy to allocate the VM requests to
the PM that can provide the resource required.

Weighted round robin (WRR): a common routing policy offered
in cloud load balancers, which allocates the task to each VM in a
sequentially turn.

List scheduling algorithm (LS): a generic greedy algorithm.
Whenever a machine becomes available, process any unprocessed
job.

Measurement parameters

In this paper we study three parameters: makespan, response time
and, degree of imbalance. These parameters are used to evaluate the
effect of load balancing approach. In the following, we introduce
them briefly and then we study the impact of algorithms on these
parameters. Makespan can be defined as the overall task completion
time. We denote completion time of task Ti on VMj as CTij. Hence, the
makespan is defined as the following function.12

Response time: Response time is the amount of time taken between
submission of a request and the first response that is produced. The
reduction in waiting time is helpful in improving responsiveness of
the VMs.

Degree of imbalance: Imbalance can be calculated as standard
deviation of the load:

		

1 2 ()
1

m
PT PTim i

σ ∑= −
=

Where PT i is processing time of VMi:

		 (PT i) =

 load v Mi
Capacityi

Make span

Figure 3 illustrates the comparison of makespan between MA,
FIFO, WRR and LS Algorithms. The X-axis represents number of

tasks and the Y-axis represents the Makespan. MA is more efficient and
has a lower Makespan when compared with other three algorithms.

 Response time

Figure 4 illustrates the response time of VMs in seconds for MA,
FIFO, WRR and LS Algorithms. The X-axis represents number of
tasks and the Y-axis represents time in seconds. It is evident that MA
is more efficient compared with other three methods.

Figure 3 Comparison of makespan.

Figure 4 Comparison of response time.

Figure 5 Comparison of degree of imabalance.

Degree of imbalance

Figure 5 shows the comparison of degree of imbalance between
MA, Random, WRR and LS Algorithms. The X-axis represents
number of tasks and the Y-axis represents the degree of imbalance.
It is clearly evident that by load balancing with MA, the degree of
imbalance is greatly reduced.

Conclusion
Rapid growth in number of cloud users has raised demand for load

balancing mechanisms. It is essential to monitor the IaaS to avoid

 max{ i , 1 , 2, ... , , 1 , 2, ... , } (2)makespan CT T i n and j VM j mij= Ε = Ε =

https://doi.org/10.15406/iratj.2016.01.00002

A multi-agent based load balancing system in IaaS cloud environment 8
Copyright:

©2016 Keshvadi et al.

Citation: Keshvadi S, Faghih B. A multi-agent based load balancing system in IaaS cloud environment. Int Rob Auto J. 2016;1(1):3‒8.
DOI: 10.15406/iratj.2016.01.00002

over and under estimation of resource levels and guarantee the SLA.
We have introduced a dynamic and integrated resource scheduling
algorithm for IaaS Cloud datacenters that presents a scheduling
strategy on VM load balancing by using multiple monitor and mobile
agents. In this way, the method achieves the best load balancing and
reduces or avoids dynamic migration thus resolves the problem of load
imbalancing and high migration cost caused by traditional scheduling
algorithms. The experimental results show that this method can better
realize load balancing and proper resource utilization.

Acknowledgements
None.

Conflict of interest
The author declares no conflict of interest.

References
1.	 Meeraa A, Swamynathan S. Agent based resource monitoring system

in iaas cloud environment. International Conference on Computational
Intelligence: Modeling Techniques and Applications (CIMTA).
2013;10:200–207.

2.	 Tian WH, Zhao Y, Zhong YL, et al. Dynamic and integrated load-
balancing scheduling algorithms for cloud data centers. Cloud Computing
and Intelligence Systems (CCIS). 2011;8(6):117–126.

3.	 Ding Y, Qin X, Liu L, et al. Energy efficient scheduling of virtual machines
in cloud with deadline constraint. Quality of Service in Grid and Cloud
Netherlands. 2015;50(c):62–74.

4.	 Singha A, Junejab D, Malhotra M. Autonomous agent based load balancing
algorithm in cloud computing. International Conference on Advanced
Computing Technologies and Applications India. 2015;45:832–841.

5.	 Wang SC, Yan KQ, Liao WP, et al. Towards a load balancing in a three-
level cloud computing network. in proc, 3rd International Conference on.
Computer Science and Information Technology (ICCSIT). 2010;1:108–
113.

6.	 Alakeel A M. A guide to dynamic load balancing in distributed computer
systems. International Journal of Computer Science and Network Security
(IJCSNS). 2010;10(6):153–160.

7.	 Janhavi AB, Surve SK, S Prabhu. Comparison of load balancing algorithms
in a grid. Data Storage and Data Engineering (DSDE), International
Conference. 2010;20–23.

8.	 Sreenivas V, Pratha M, Kemal M. Load balancing techniques: Major
challenge in cloud computing - a systematic review. Electronics and
Communication Systems (ICECS), International Conference; Africa:
IEEE; 2014. p. 1–6.

9.	 Tawfeek MA, El Sisi A, Keshk AE, et al. Cloud task scheduling based on
ant colony optimization. Computer Engineering & Systems (ICCES). 8th
International Conference; Egypt,: IEEE; 2013. p. 64–69.

10.	 Hu J, Gu J, Sun G, et al. A scheduling strategy on load balancing of virtual
machine resources in cloud computing environment. Proc PAAP. 2010. p.
89–96.

11.	 Moradi M, Dezfuli MA, Safavi MH. A new time optimizing probabilistic
load balancing algorithm in grid computing IEEE. Iran: Springer; 2010.

12.	Dhinesh Babu LD, Krishna PV. Honey bee behavior inspired load balancing
of tasks in cloud computing environments. Applied Soft Computing.
2013;13(5):2292–2303.

13.	Wood T, Prashant S, Arun V, et al. Black-box and Gray-box Strategies for
Virtual Machine Migration in the proceedings of Symp. On Networked
Systems Design and Implementation (NSDI) Portland. USA: USENIX
Association; 2007. p.1–14.

14.	 Calheiros RN, Ranjan R, Beloglazov A, et al. CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Softw Pract Exper.
2011;41(1):23–50.

15.	 Buyya R, Ranjan R, Calheiros RN. Modeling simulation of scalable
cloud computing environments and the cloudsim toolkit: challenges and
opportunities. Australia: University of Melbourne; 2009. p. 21–24.

https://doi.org/10.15406/iratj.2016.01.00002
http://www.sciencedirect.com/science/article/pii/S2212017313005070
http://www.sciencedirect.com/science/article/pii/S2212017313005070
http://www.sciencedirect.com/science/article/pii/S2212017313005070
http://www.sciencedirect.com/science/article/pii/S2212017313005070
http://ieeexplore.ieee.org/document/6045081/
http://ieeexplore.ieee.org/document/6045081/
http://ieeexplore.ieee.org/document/6045081/
http://dl.acm.org/citation.cfm?id=2796204
http://dl.acm.org/citation.cfm?id=2796204
http://dl.acm.org/citation.cfm?id=2796204
http://www.sciencedirect.com/science/article/pii/S1877050915004111
http://www.sciencedirect.com/science/article/pii/S1877050915004111
http://www.sciencedirect.com/science/article/pii/S1877050915004111
http://paper.ijcsns.org/07_book/201006/20100619.pdf
http://paper.ijcsns.org/07_book/201006/20100619.pdf
http://paper.ijcsns.org/07_book/201006/20100619.pdf
http://ieeexplore.ieee.org/document/5452621/references
http://ieeexplore.ieee.org/document/5452621/references
http://ieeexplore.ieee.org/document/5452621/references
https://ieeexplore.ieee.org/document/6892523/
https://ieeexplore.ieee.org/document/6892523/
https://ieeexplore.ieee.org/document/6892523/
https://ieeexplore.ieee.org/document/6892523/
https://ieeexplore.ieee.org/document/6707172/
https://ieeexplore.ieee.org/document/6707172/
https://ieeexplore.ieee.org/document/6707172/
http://ieeexplore.ieee.org/document/5715067/
http://ieeexplore.ieee.org/document/5715067/
http://ieeexplore.ieee.org/document/5715067/
http://ieeexplore.ieee.org/document/5486187/
http://ieeexplore.ieee.org/document/5486187/
http://www.sciencedirect.com/science/article/pii/S1568494613000446
http://www.sciencedirect.com/science/article/pii/S1568494613000446
http://www.sciencedirect.com/science/article/pii/S1568494613000446
https://www.usenix.org/legacy/event/nsdi07/tech/full_papers/wood/wood.pdf
https://www.usenix.org/legacy/event/nsdi07/tech/full_papers/wood/wood.pdf
https://www.usenix.org/legacy/event/nsdi07/tech/full_papers/wood/wood.pdf
https://www.usenix.org/legacy/event/nsdi07/tech/full_papers/wood/wood.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.buyya.com/papers/CloudSim2010.pdf
http://www.cloudbus.org/~raj/papers/CloudSim-HPCS2009.pdf
http://www.cloudbus.org/~raj/papers/CloudSim-HPCS2009.pdf
http://www.cloudbus.org/~raj/papers/CloudSim-HPCS2009.pdf

